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Summary. The paper deals with two topics related to the problem which 
reference state is better for many-body perturbation theory: restricted Har t ree -  
Fock (RHF)  or unrestricted H a r t r e e - F o c k  (UHF)?  The first topic concerns the 
potential surfaces. Several examples are presented to show shortcomings of the 
two approaches and a simple way is presented which seems to give a useful 
potential curve in the whole range of  interatomic distances by a composition of  
R H F  and U H F  potential curves. The second topic concerns the many-body 
perturbation theory "for open-shell systems in the R H F  formalism. The method 
is critically examined and compared with the ordinary many-body perturbation 
theory using U H F  as the reference. This examination of  many-body techniques 
provides also some insight into the problems inherent of  the SCF theory: spin 
contamination from higher multiplets, localization of  orbitals, and self-consis- 
tency effects. 

Key words: Many-body perturbation t h e o r y -  H a r t r e e - F o c k -  Potential sur- 
faces - Open-shell systems 

1. Introduction 

The aim of  this paper is to show some aspects of  the choice of  the reference state 
in beyond Har t r ee -Fock  calculations. More specifically we want to show what 
are the consequences of using restricted Har t r ee -Fock  (RHF)  and unrestricted 
Har t r ee -Fock  (UHF)  as reference states in Many-Body Perturbation Theory 
(MBPT). Theoretically, the choice of  the MO basis for highly correlated wave 
functions is irrelevant. In actual calculations it is however very important and as 
shown, for example, by Shavitt and collaborators [1], it may considerably 
improve the convergence of  CI expansion and save much computer time. In this 
paper the choice of  the MO basis will be restricted to canonical R H F  and U H F  
orbitals and in the next sections we will discuss the virtues and shortcomings of  
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RHF-MBPT and UHF-MBPT treatments. The second section will deal with the 
properties and features of RHF-MBPT and UHF-MBPT potential surfaces. The 
third section deals with open-shell systems and it presents our attempt to develop 
[2] a more economic alternative to the commonly used unrestricted Moiler- 
Plesset [3-5] theory (UMP) which would be based on the RHF formalism. 
Finally, in the last section we present the simulation of the UHF states by means 
of the perturbed RHF wave functions. We will use it for distinguishing between 
true correlation effects and self-consistency effects in RHF-MBPT and related 
double-perturbation approaches. 

2. RHF-MBPT and UHF-MBPT potential curves 

Obtaining potential curves which represent dissociation of a bond in a molecule 
belongs to the most difficult tasks of applied quantum chemistry. As regards the 
utility of single-reference RHF and UHF beyond-Hartree-Fock methods, one 
may find in the older literature clear statements about the superiority of UHF 
treatments. Figure 1 shows a typical example. 

The authors of these calculations [6] argue for the utility of the UHF approach 
by the following plausible statements. The different space orbitals give enough 
flexibility to allow the UH F (in the upper part of Fig. 1) to dissociate properly 
into a hydrogen and fluorine atom, whereas the RHF curve shows the character- 
istic breakdown at larger interatomic distances. The two lower curves in Fig. 1 
were obtained from the configuration interaction (CI) calculations with all single 
and double replacements out of the RHF and UHF determinants, respectively. 
The incorrect dissociation still persists in the RHF-CI curve, whereas the 
UHF-CI method seems to give a useful potential curve with the reasonable 
values of the equilibrium distances and dissociation energy. 

The same arguments were used [7, 8] for emphasizing the utility of UHF- 
MBPT calculations. At intermediate distances the UMP2 curves show a similar 

-99.8 

E/Eh 

-IOQ.O 

-100.2 

. . . . . . . .  u _ : _ - ~  _ _ 

RHF-cI 

I I I I 
2 t +  6 8 

r/ao 

Fig. 1. Potential curves for hydrogen fluoride with 
the RHF and U H F  methods and with the CI-SD 
expansions based on either an R H F  or an U H F  
reference state [6]. The basis set used was 
( 1 ls6p ld/5s lp)/[5s3p ld/3s lp] 
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]Fig. 2. Potential curves for N2 given by 
MBPT for doubles through the sixth order 
[9, 10]. The solid line and full symbols 
represent the RHF-based model, the dashed 
line and open symbols the UHF-based 
model 

behavior as the UHF-CI curve in Fig. 1: they usually cross the RMP2 curve and 
then going to the equilibrium distance the UMP2 energy is higher than RMP2 
energy. As seen in Fig. 2 this effect is very distinct in the case of the nitrogen 
molecule reported by Bartlett and Purvis [9, 10]. Up to about 2.8 A the RHF- 
MBPT curve follows closely the experimental curve (not shown in Fig. 2), 
whereas the UHF-based model gives a too steep curve with a wrong curvature. 
It is assumed [7, 10] that the origin of this incorrect behavior is the spin 
contamination from higher multiplets. The effect of the spin contamination is 
even more dramatic on the potential surfaces of some radical reactions. An 
example in Fig. 3 is taken from paper by Sosa and Schlegel [ 11], which shows the 
energy profile for the reaction OH+C2Ha--*C2HaOH. Both the UHF and 
UMP4 curves exhibit a distinct activation barrier, which is clearly an artefact of 
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Fig. 3. Energy profile [ t i ]  for 
the reaction 
C2H 4 H- OH --* C2H4OH. The 
solid lines and open symbols 
denote unprojected UHF and 
UMP4 calculations, dashed 
lines and full symbols the 
projected UHF and UMP4 
calculations. In all 
calculations the 6-31G* basis 
set was used 
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the UHF and UMP4 approaches. The other two curves in Fig. 3 were also 
obtained from the UHF and UMP4 calculations but the wave functions were 
corrected by annihilating the largest spin contaminant. Overestimation of activa- 
tion barriers owing to the  spin contamination was also found by Sosa and 
Schlegel with some other reactions [ 12, 13]. Their results demonstrated the utility 
of UHF-MBPT with the spin projection [13, 14], especially at higher orders of 
MBPT. The method is, however, not free Of complications giving discontinuities 
on potential curves of bond dissociations a t  the point where the UHF curve 
coincides with RHF curve [7, 14]. 

The method for projected unrestricted M~ller-Plesset second-order energies 
was developed by Knowles and Handy [46]. The method is based on annihilating 
of one component from the wave function and brings enhanced accuracy at low 
cost. The potential curves by spin-extended Hartree-Fock method were also 
discussed by Klimo and Tifio [45]. More relevant for applications is probably the 
fact that spin-projected methods are not size extensive in a rigorous manner. 
Recently, the coupled cluster methods based on UHF formalism which annihi- 
late all spin components were developed in Bartlett's group [47-49]. Scuseria 
[50] formulated an open-shell restricted singles and doubles coupled cluster 
method including perturbative triple excitation CCSD(T) that does not include 
any spin contamination for the correlation energies. Spin-adapted restricted 
linear CCSD method based on splitting of Hamiltonian (see Eq. (9)) was also 
developed in our group [51]. 

From Figs. 1 and 2 it is evident that neither RHF nor UHF approaches give 
realistic potential curves in the whole range of interatomic distances. RHF 
approaches give curves of correct shape near the equilibrium structure but fails 
at larger interatomic distances. On the other hand, the UHF approaches may 
(and mostly do) lead to correct dissociation limits but give unrealistic curves at 
medium- and short-range distances. A potential curve of a homolytic dissocia- 
tion cannot be described by a single determinant and thus single reference-based 
correlation methods like MBPT fail as long as any lower orders are considered. 
The obvious remedy of this problem is to pass to multireference approaches. It 
should be realized, however, that for a somewhat larger polyatomic system such 
an approach becomes prohibitive, so it seems to be still topical in chemical 
applications to try to exploit single-reference approaches. 

Duchovic and collaborators [15] tried to obtain useful potential curves by 
combining the merits of RHF-MBPT and UHF-MBPT approaches, viz. by 
linking the short-distance range of the RHF-based curve with the long-distance 
range of the UHF-based curve. From their data for the CH4--*CH 3 + H 
dissociation presented in Fig. 4 it is seen that such a linking seemed to be 
straightforward for the two MP4 curves. Their composite MP4 curve is shown in 
Fig. 5. Duchovic et al. tested the shape of this curve by comparing it with the 
Morse curve. As it is seen in Fig. 5, the two curves differ significantly in the 
intermediate R(C-H) range. Schlegel published later [14] a revised MP4 curve for 
which the wave function was corrected by annihilating the spin contamination 
from the triplet state. His curve was in a very good agreement with the potential 
curve obtained by Brown and Truhlar [16] from the multireference CI-SD 
calculations. Obviously, the unrealistic sharp bend of the unprojected MP4 curve 
is due to the spin contamination, though possibly this sharp bend might be 
eliminated to some extent by an empirical linking of the RMP4 and UMP4 
curves noted in the next paragraph. In spite of the high level of sophistication of 
the calculations, the projected MP4 and multireference CI-SD curves were not in 
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Fig. 4. Potential curves [ 15] for the 
dissociation CH 4 ~ CH 3 + H. Open 
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length was varied; the other remaining 
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1.986 A and all H C H  angles fixed at the 
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a satisfactory agreement with the Morse curve. The two curves had still a 
somewhat sharper bend than the Morse curve. This need not be, however, too 
much disturbing, since both spectroscopists and theorists believe jointly that the 
Morse curve is not a reliable standard against which the shape of  potential 
curves for polyatomics should be tested. 

We think therefore that it is preferable to judge the shape of  potential curves 
for polyatomics  by means of  the following function: 

V = Vo +fry +f~y2 +f~,y3 +f~yO (I) 
where y is a Morse-like term: 

y = 1 - e -~( ' - '0 )  (2) 
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Fig. 5. Potential curves [ 15] for the 
dissociation CH4 --* CH 3 + H. The solid line 
represents a composite MP4 curve which was 
constructed by linking the MP4 and UMP4  
curves. In contrast to Fig. 4, the H C H  angles 
were optimized at each point. The  basis set 
used was 6-31G**. The dashed line is the 
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Fig. 6. Potential curves [ 17] for the symmetrical 
r(Li-Li) stretch in the O3h structure of Li~-. The 
dashed lines correspond to U H F  approaches, the solid 
lines to RHF  approaches. The basis set used [ 18] was 
(1 ls3p)/[6s3p] 

and a is a parameter which may be optimized together with fr, frr, frrr, and frrr~" 
The typical values for a are between 0.5 and 1 and a guess to a may be taken 
from the Morse functions for diatomics. We have used [17] Eq. (1) for examina- 
tion of RMP2 and UMP2 potential curves and for finding a justifiable combina- 
tion of RMP2 and UMP2 curves which would give a realistic potential at any 
interatomic distance. We have used for that purpose our RMP2 and UMP2 data 
[17] for the symmetrical Li-Li stretch of the D3h structure of Li~-. The respective 
curves, plotted in Fig. 6, show the same features as curves in  Figs. 1 and 2. When 
Eq. (1) is applied, the RMP2 curve gives a very good fit to all points in the short 
and intermediate distance range but, as expected, the dissociation energy is very 
poor. Treating the all-computed RMP2 and UMP2 points as a single data set 
does not give a good fit. A very good fit is obtained, however, if the data set 
contains RMP2 points below the crossing point and UMP2 points above the 
crossing point. 

3. RHF-MBPT for open shell systems 

Formulation of this version of MBPT originated from our attempt to develop a 
more economic alternative to commonly used UHF-MBPT which is also called 
unrestricted Moller-Plesset (UMP) theory. Our strategy [2] was to retain all 
merits of the MBPT treatments of closed-shell molecules but to base the 
perturbation expansion on the solution given of the open-shell restricted 
Har t ree-Fock method developed by Roothaan [19]. This method can accommo- 
date several types of open-shell configurations but we shall restrict ourselves to 
the most common of them, viz., to doublet states in which the unpaired electron 
occupies a nondegenerate molecular orbital and to triplet states having a 
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half-closed-shell configuration. For such states the respective Hartree-Fock 
operator, fn, becomes [19]: 

_ 1 K  f,~=h+Y,(2Ji Ki)+X(Jm-~ m)+ero+oeT-o (3) 
i rn 

where the operators Pr and Q are defined as: 

Q=ZKm 
m 

er = ~ ,  1i)(i1 + ½ E Im)( m ] 
i m 

(4) 

(5) 

The indices i and m run over the doubly occupied and singly occupied molecular 
orbitals, respectively. The spinorbitals will be hereafter denoted by the uppercase 
characters. 

Our task is now to modify the usual normal product form of the Hamilto- 
nian [3]: 

H =  <~olal~o) + ~ <A IfIB)N[X]Xn] 
A B  

+½ Z <ABIvICD>N[X~X~XDXc] (6) 
ABCD 

so that it could accommodate the fR operator instead of the I-Iartree-Fock 
operator f This may be achieved by the following substitution [20]: 

f =fR -- U (7) 

where U is a new one-particle operator defined by the difference between fR and 
f: 

U 1 = ~ Y~ (Km, - K,.p) + PTQ + Qt'T - Q ( 8 )  
m 

The subscripts a and fl are used to denote the spinorbitals ma and mfl. By 
substituting into Eq. (6) from Eq. (7) we obtain: 

n - -  <~olnl~o> + y, eAN[X+XA] 
A 

/ 
+½ ~ (ABIvICD)flV[x+X+XDXc]-~ (A[uIB)N[X]XB] (9) 

ABCD / /  A B  

where the orbital energies eA and spinorbitals A, B, C, D are the eigenvatues and 
the eigenfunctions of the fR operator. Now we are ready to follow closely the 
MBPT procedure developed for closed-shell molecules [3]. Using Paldus and 
(~i~ek's notation [3] we have: 

K T  o = k T o 

K = H - -  (ToIHI To) 

for the perturbed eigenvalue problem: 

Ko~o = ko~o 

g o  = n o  - < ~ o l n o l ~ o >  

(10) 

( l l )  

(12) 

(13) 
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for the unperturbed eigenvalue problem, and: 

w=½ X <ABtvICD>N[X3XZX ,Xc] (14) 
A B C D  

for the third term on the right-hand side of Eq. (9). Comparing Eqs. (9), (11), 
and (14) we obtain: 

K = K 0 +  W -  U (15) 

Hence the perturbation is represented by two operators. Conventionally we will 
call W the "true correlation" operator and U the "spin polarization" operator. 
For ( W -  U) perturbation the Rayleigh-Schr6dinger expansion through third 
order becomes [ 3]: 

k = (+o ] (W-  U)Qo(W- U)l+o) + ((bo[(W- U)Oo(W- U)Qo(W- U)[+o) 

(16) 

where the first term on the right-hand side of Eq. (16) represents the second- 
order contribution to the correlation energy E <2), and the second term of Eq. (16) 
the third-order contribution, E <3>. 

Giving a diagrammatic expression to Eq. (16) also follows the traditional 
scheme [3]. In addition to the expression of the W operator: 

c A - x f c  

= ! + i 

B D B C 

(17) 

where 

A xr. , ,c  
! 
! 

--+ (AB Iv I CD)N[X + X~ XnXc] 

B D 

we also ha~e to introduce the diagram for the U operator: 

A B -+ - <A luIB>N[X,  xB] 

(18) 

(19) 

Following the diagrammatic rules [3, 21] we can arrive at the diagrammatic 
representation of Eq. (16). The respective sets of Hugenholtz and Goldstone 
diagrams are entered in Figs. 7 and 8. Decoding diagrams to mathematical 
expressions was also done by diagrammatic rules [3] generally valid in MBPT. 
The explicit formulas for doublet and triplet states may be found in our earlier 
papers [22, 23]. 

Shortly after our papers [2], the theory has been independently derived by 
McDowell [24] and Kvasni6ka and collaborators [25]. Wilson [26] extended it to 
the fourth-order by publishing all fourth-order diagrams and Kvasni6ka and 
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Fig. 7. Hugenholtz diagrams for the 
second-order (I, II) and the third-order 
(III-XIII) contributions to the 
correlation energy of half-closed-shell 
systems. The diagrams VIII, IX, and X 
can be obtained in two topologically 
different ways and their contributions 
must be therefore counted twice. The 
diagrams I and III-V are formally the 
same as those appearing in the 
closed-shell and unrestricted open-shell 
treatments [3]. The other diagrams 
(II, VI-XIII) are due to the additional 
term in the perturbation ("spin 
polarization" operator U in Eq. (15); in 
diagrams it is denoted by open circles) 

collaborators [25] formulated the theory for the linearized coupled cluster 
approach. 

After the formulation of the theory one could have doubts about its utility 
for two reasons. First, the theory has been primarily developed for the antici- 
pated low cost of  calculations. Since the number of  constructed diagrams (see 
Figs. 7 and 8) is rather high, one might presume that this expectation need not 
be met. It turned out however that from the set of  diagrams in Fig. 7 only the 
diagrams I I I - V  are time consuming, whereas the evaluation of  the rest is very 
fast. Practically the cost of  the third-order calculation is only slightly higher than 
that for the ordinary third-order MBPT calculation (MP3) for a closed-shell 
molecule of  the same size and for the same basis set. The second uncertainty 
concerned the convergence of  the perturbation expansion. Since the perturbation 
now contains two terms, one might think that it would be too large and the 
convergence therefore rather poor. This of course had to be tested by numerical 
calculations. 

We decided [27] therefore to run in parallel RHF-MBPT(3) ,  CI-D, and 
CEPA calculations for a set of  open-shell systems using the same basis set and 
the molecular geometry. The energies obtained are entered in Table 1. An overall 
observation from this table is that RHF-MBPT(3)  gives somewhat more correla- 
tion energy than CI-D but somewhat less correlation energy than CEPA. This 
conforms to the experience found with closed-shell molecules. One further 
observes that except for CH3, the ratio between RHF-MBPT(3)  and CEPA 
correlation energies is nearly constant (98.5 + 1%); but the same does not hold 
for the ratio between RHF-MBPT(3)  and CI-D. The size inconsistency of the CI 
approach (if  this is limited to doubles only) causes the CI-D correlation energies 
to become successively smaller if the size of  the system is increased (compare F, 
FHH,  H F H  versus HFF).  We have also computed the MP3, CI-D, and CEPA 
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Fig. 8. Goldstone diagrams derived from the Hugenboltz diagrams in Fig. 7. Some diagrams can be 
obtained in two or four topologically different ways, so that their contributions to the correlation 
energy mus t  be multiplied by the indicated factors 

energies for related closed-shell molecules and f rom the energy differences we set 
up Tables 2 and 3 on energies of  reactions and barrier heights for a set of  simple 
chemical reactions. The MBPT(3) data are seen to lie mostly between the CI-D 
and CEPA results which reflects the trends of  Table 1. The RHF-MBPT(3)  
results obtained were promising and we were inclined to believe that the theory 
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Table la. Energies of  open-shell systems. Comparison of RHF-MBPT(3), CI-D, and CEPA results 

System SCF RHF-MBPT(3) CI-D CEPA 

F - 99.394521 - 0.14698 - 0.14346 - 0.14751 
H3 - 1.589994 - 0.05279 - 0.05256 - 0.05341 
BH2 (2A 1 ) - 25.752516 -- 0.08293 - 0.08013 -- 0.08281 
NH 2 ( 2B~ ) - 55.573224 -- 0.16546 - 0.15882 -- 0.16737 
NH 2 (2A1) -55.523338 -0.16133 -0.15524 -0.16314 
HFH - 100.435460 - 0.22955 - 0.22035 - 0.23362 
FHH - 100.506711 - 0.18767 - 0.18260 - 0.19071 
H F F  - 199.202451 - 0.40159 - 0.37029 - 0.41187 
CH 3 - 39.567926 - 0.15715 - 0.14452 - 0.15225 
CH 5 - 40.655091 - 0.19898 - 0.18953 - 0.20395 

Details of calculations [27]: CI-D and CEPA were actually PNO-CI(D) and CEPA(D); the (1s) 2 
cores were left uncorrelated; basis set used was (9s5p ld/4s Ip)/[4s2p ld/2s lp]; all energies are in a.u., 
for further details see Ref. [27] 

Table lb. Percentage 

System RHF-MBPT(3)/CI-D RHF-MBPT(3)/CEPA 

F 102.4 99.6 
H a 100.4 98.8 
BH2 (2A1) 103.5 100.1 
NH2 (2B1) 104.2 98.9 
NH2 (2A1) 103.9 98.9 
HFH 104.2 98.3 
FHH 102.8 98.4 
H F F  108.5 97.5 
CH 3 108.7 103.2 
CH 5 105.0 97.6 

Table 2. Computed energies of reactions (in kJ/mol) a 

Reaction SCF RHF-MBPT(3) CI-D CEPA 

2H ~ H 2 ± 347.9 -436.0 -440.9 -440.9 
2F --* F 2 + 154.5 - 84.6 - 33.6 - 101.9 
H + F ---, HF  - 404.5 -- 541.1 - 533.5 - 543.1 
F + H 2 ~ FH + H -56 .6  - 105.1 -92 .6  - 102.2 
H + F 2 ~ H F  + F --559.0 -456.5 -500.3 -441.6 
H + C H 4 ~ C H 3  + H 2 +19.8 - 8 . 7  +3.3 +11.1 

a Obtained from the entries of Table 1 and additional calculations on closed-shell species. For details 
see Ref. [27] 

w o u l d  b e  f ree  o f  c o m p l i c a t i o n s  in  c h e m i c a l  a p p l i c a t i o n s .  L a t e r ,  h o w e v e r ,  w e  h a v e  

f o u n d  a s e r i o u s  f a i l u r e  o f  t h e  t h e o r y  f o r  o x y g e n  m o l e c u l e  [28]. T h e  0 2  r e s u l t s  

t o g e t h e r  w i t h  t h e  r e s u l t s  f o r  t h e  m e t h y l e n e  m o l e c u l e  a r e  p r e s e n t e d  in  T a b l e s  4 

a n d  5. W h e r e a s  t h e  R H F - M B P T  d a t a  f o r  C H 2  e x h i b i t  t h e  s a m e  t r e n d s  a s  w i t h  

o t h e r  o p e n - s h e l l  s y s t e m s  l i s t ed  in  T a b l e  1, t h e  s i t u a t i o n  w i t h  t h e  0 2  m o l e c u J e  is 
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Table 3. Computed barrier heights of some radical reactions (in kJ/mol) a 

Reaction SCF RHF-MBPT(3) CI-D CEPA 

H + H 2 --* H 2 + H 106.3 52.9 58.3 56.1 
H + FH --, HF + H 293.2 213.0 220.0 205.7 
F + H 2 --* FH + H 49.6 30.8 39.9 29.2 
H + F2--* HF + F 71.0 27.5 39.3 19.8 
H + CH 4 ~ CH 3 + H 2 135.4 82.3 90.7 80.9 

a Obtained from the entries of Table 1 and additional calculations on closed-shell species. For details 
see Ref. [27] 

Table 4. Comparison of correlation energies given by RHF-MBPT and CI-SD calculations a for the 
molecules CH z and 02 

Molecule SCF RHF-MBPT(2) RHF-MBPT(3) CI-SD 

CH 2 (3BI) -38.9279 --0.1144 --0.1154 --0.1137 
02 (32:g) -- 149.633213 --0.49513 --0.27100 --0.34451 

The 1al orbital in CH2 was kept doubly occupied; the basis set used was (9s5p ld/4slp)/[4s2p ld/ 
2slp], all energies are in a.u., for additional details see Ref. [28] 

Table 5. Contributions from diagrams I-XIII  to the RHF- 
MBPT(3) correlation energy ~ of CH 2 and 02 

Correlation energy (a.u.) 

Diagram CH 2 0 2 

I -0.11120 --0.47938 
II -0.00319 -0.01575 
III - 0.07895 - 0.31446 
IV 0.02992 0.16427 
V 0.02529 0.15886 
VI 0.01402 0.07576 
VII 0.00827 0.11712 
VIII 0.00111 0.01465 
IX 0.00029 0.01174 
X - 0.00020 - 0.00113 
XI - 0.00129 - 0.00624 
XII 0.00022 0.00104 
XIII 0.00033 0.00251 

a See footnote in Table 4 

d i f fe ren t .  C o m p a r e d  to  C I - S D ,  the  s e c o n d - o r d e r  c o n t r i b u t i o n  is t o o  large.  T h e  
t h i r d - o r d e r  c o n t r i b u t i o n  is o f  o p p o s i t e  s ign,  b u t  it is a l so  o v e r e s t i m a t e d ,  so  t h a t  
the  r e su l t ing  to ta l  c o r r e l a t i o n  ene rgy  a t  the  t h i r d  o r d e r  is t o o  low.  O b v i o u s l y ,  
R H F - M B P T  c o n v e r g e s  p o o r l y  in th is  case.  D i f f e r en t  b e h a v i o r  o f  CH2 a n d  0 2  
sy s t ems  m a y  be  u n d e r s t o o d  f r o m  the  i n s p e c t i o n  o f  c o n t r i b u t i o n s  o f  i nd iv idua l  
d i a g r a m s  I - X I I I .  
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As seen in Table 5, the critical point for the poor convergence with 02 is a 
large contribution from diagrams VI and VII which contain the U vertex. This 
suggests that the part of the perturbation which is due to the "spin polarization" 
operator U is very important for the oxygen molecule. The overall perturbation 
W - U  is likely to be too large, which is a probable reason for the poor 
convergence of the RHF-MBPT expansion. Our speculation was [28] that such 
a poor convergence might be expected with any open-shell molecule in which the 
open shell shares a common space with occupied and/or virtual orbitals, in 
contrast to radicals with a localized unpaired electron for which small spin 
polarization and good RHF-MBPT convergence may be expected. Our assump- 
tion was supported by a systematic investigation by Balkov~t [29], who showed 
in a convincing manner that RHF-MBPT(3) works considerably better for 
open-shell species with localized unpaired electrons than for open-shell species 
with delocalized unpaired electrons. We present some of her data in Tables 6 and 
7 in order to use them for drawing some practical conclusions of this section. It 
is seen from the two tables that the difference in SCF energies ERHF -- EtJHF may 
be taken as a rough measure of the spin polarization and the convergence of the 

Table 6. R H F  and U H F  SCF energies a 

System R H F  U H F  (S  2) R H F - U H F  

CH -38 .2614  -38 .2649  0.756 0.00355 
H2NO -130.3720 -130.3790 0.762 0.00698 
C H 3 0  -114.4146 -114.4190 0.758 0.00435 
HCO - 113.2421 -113.2464 0.765 0.00433 
HO2 -150.1579 -150.1633 0.763 0.00545 
CH 3 -39 .5547 -39 .5590  0.762 0.00428 
CN -92 .1847 -92 .2039  1.090 0.01927 
02 -149.5982 --149.6179 2.030 0.01971 
CH 2 --38.9165 --38.9215 2.015 0.00503 

a Taken from Ref. [29], 6-31G* basis set was used, all energies are in a.u. 

Table 7. Compar ison of  U H F - M B P T  and R H F - M B P T  expansions for open shell systems a 

System 
MBPT(2) MBPT(3) 

R H F  U H F  R H F - U H F  R H F  U H F  R H F - U H F  

CH -0 ;0870  -0 .0737  -0 .0133  -0 .0976  -0 .0901 -0 .0075  
H2NO -0 .3588  -0 .3228  -0 .0360  -0 .3352  -0 .3344  -0 .0008  
C H 3 0  -0 .2905  -0 .2649  -0 .0256  -0 .2966  -0 .2870  -0 .0096  
H C O  -0 .3219  -0 .2855  -0 .0364  -0 .2909  -0 .2864  -0 .0045  
HO 2 --0.3625 --0.3338 --0.0387 --0.3434 --0.3419 --0.0015 
CH 3 -0 .1233  -0 .1097  -0 .0136  -0 .1319  --0.1255 -0 .0064  
CN -0 .3083  -0 .2226  -0 .0857  -0 .2685  -0 .2315  -0 .0370  
02 -0 .4557  -0 .3234  -0 .1323  -0 .2772  -0 .3219  +0.0447 
CH 2 -0 .1016  -0 .0818  --0.0198 -0 .1033  -0 .0957  -0 .0076  

a Taken from Ref. [29]; compatible with data of  Table 6 
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ERH F --  EUH F difference is extraordinarily high. The situation is of course compli- 
cated by a possible contamination of higher multiplets in the UHF solution, so 
one should also take in consideration the S 2 value. With the oxygen molecule the 
S 2 value is close to that for a pure triplet state and the ERHV- EUHV difference 
is likely to be solely due to the spin polarization. On the other hand, with the 
cyano radical the S z value of 1.09 is very different from the value of 0.75 for a 
pure doublet state and, as will be shown in the next section, the spin polarization 
is small in this case. We have attempted to formulate the effect of S 2 and 
ERH F - - E U H  v in a compact form in Table 8. As indicated in this table it is 
profitable to know which part of the ERH F - - g u n  F difference is due to the spin 
polarization and which part is due to the contamination of higher multiplets. In 
the following section we will show how the spin polarization contribution may be 
simply estimated by expressing the UHF wave function as a perturbed RHF 
wave function. 

Finally, some other double-perturbation theories, related to our RHF- 
MBPT, should be noted. When studying the system in an external field one can 
use two different perturbation methods for the calculation of the external 
perturbation effects [30]. The so-called uncoupled Hartree-Fock (UCHF) 
[31, 32] perturbation theory has exactly the same structure as our RHF-MBPT 
treatment. The operator U in this case corresponds to the presence of external 
field. The spinorbital basis on which we define creation and annihilation opera- 
tors (Eq. (9)) is determined in the field of the unperturbed Hartree-Fock 
potential. The UCHF-based perturbation method has the structure of the 
double-perturbation theory and it permits us to distinguish between pure two- 
particle (correlation) effects and pure one-particle (self-consistency) effects [30]. 
On the other hand, in the coupled Hartree-Fock (CHF)-based perturbation 
theory [33-36] the spinorbital basis is determined in the presence of the external 
field. Formally, therefore, the CHF-based perturbation theory resembles the 
UHF-MBPT treatment. There is, however, an important difference. Whereas the 

Table 8. Recommendation for using R H F  and U H F  approches in MBPT(3) treatments of open-shell 
systems 

ERHF-  EUHV ( S 2 H v )  -- (Spure')z a Notes On the use of  
RHF-MBPT and UHF-MBPT 

small small 

small large 

large small 

large large 

Either approach should work; 
RHF-MBPT is more economic, 
however. 

This combination is unlikely. 
If it still occurs, try 
RHF-MBPT. 

Use preferably UHF-MBPT. 

Avoid using UHF-MBPT.  Test 
the spin polarization (see 
Sect. 4): if it is small 
use RHF-MBPT; if it is large 
user other method than MBPT. 

a By 2 (Spure) we mean 0.75 for doublets and 2.0 for triplets 
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CHF approach is clearly superior to the UCHF approach, use of UHF-MBPT 
instead of RHF-MBPT seems to be profitable only in exceptional cases of very 
large self-consistency effects (spin polarization). 

Another example of application of double-perturbation theory is the MBPT 
using noncanonical [24] (e.g., V N -  1 potential) and localized [37, 38] orbitals. In 
the noncanonical orbital formulation of the perturbation theory the extra 
one-particle term corresponds to the change in self-consistency effects. In the 
localized orbital based perturbation theory the extra one-particle perturbation is 
the consequence of unitary transformation performed on the occupied and 
virtual single-particle functions. In this case the nonzero off-diagonal elements of 
the Hartree-Fock operator enter the perturbation expansion. Since the unitary 
transformation does not change the total energy and the wave function of 
the system, the extra one-particle perturbation does not correspond to self- 
consistency effects. Therefore the number of double-perturbation diagrams is 
substantially reduced. This is due to the fact that (using our terminology) all 
diagrams containing the one-particle extra term U are vanishing, unless the 
entering and leaving lines of the U vertex are two hole lines or two particle lines. 
Thus the diagrams II and VIII-XIII  (see Fig. 7) having the U vertex linked with 
one hole and particle line give zero contributions in this approach and the only 
nonvanishing "localized" diagrams through third order are the diagrams [38] VI 
and VII. 

As regards the applications the external field perturbation theories have 
already been developed to a state of routine calculations [9, 41] whereas the 
localized orbital-based perturbation treatments have been the subject of intensive 
studies [39, 40, 53-55]. An important contribution in this field was done by 
Saebo and Pulay [53-55]. 

An interesting method based on Moller-Plesset partitioning of Hamiltonian 
for open-shell and multiconfigurational SCF reference states was developed by 
Wolinski, Sellers, and Pulay [52]. They followed the idea which they used in 
formulating the many-body perturbation theory for localized orbitals [53-55]. 
The basic idea by which they differ from our approach [2] is that they use 
nondiagonal zeroth-order Hamiltonian. The reference function accounts for 
nondynamical electron correlation and is an eigenfunction of S 2 and Sz. The 
poor convergence of unrestricted Moller-Plesset perturbation theory was studied 
by Gill, Pople, and Radom [56]. They showed that the spin contamination and 
poor UMP convergence are closely related. Our conclusion is that the current 
problem is to formulate the spin-adapted ROHF CC method where the impor- 
tant steps were already done in the work of Bartlett [47-49, 57], Scuseria [50] 
and also in our group [51]. 

4. Simulation of  the U H F  states by means of  the perturbed RHF wave functions 

In order to obtain deeper insight into the problems of RHF-MBPT, we decided 
to undertake a study [42] of spin polarization effects, which may be called more 
generally self-consistency effects, separately from correlation effects. The idea 
was not new and since Musher's paper [43] the problem of self-consistency 
effects was treated in the literature several times. Probably the most elaborate 
treatment was given by Rossky and Karplus [44]. Whereas the essence of their 
treatment is a perturbation expansion of UHF spinorbitals through RHF 
spinorbitals, we preferred a more transparent approach based on the perturba- 
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tion expansion for the UHF Slater determinant. We disregarded the fact that the 
UHF wave function is not the eigenfunction of the S 2 operator. Using this 
simplification, one may assume for the UHF wave function the following 
first-order expansion: 

~0 UHF'' = ~o RHF + Q0 U~o RHF (20) 

where Qo and Uhave the same meaning as in Eq. (16). Since Eq. (20) implies the 
use of the intermediate overlap: 

(~oRHFI~oUHF'" > = 1 (21) 

the simulated UHF energy is given by: 

E,,o.F,, - <~°u"F" Inl ~0U"F"> 
( ~  0UHF" I ~ ;UHF"> (22) 

The self-consistency effects are then represented by the difference 
E,,UHF,,--ERHF, where E,,UHF- is given by Eq. (22) and ERH v is simply 
<~"FI~/I~o""F>. Substitution of Eq. (20) into the numerator of Eq. (22) gives 
US: 

<e0U"F"IHI~0U"F"> = <~0 ~"F + ~HFUQolHI~'~"~ + QoU~oRHF> (23) 

Equation (23) may be rewritten as: 

+ <,~"FUaolHlao U,~"~> (24) 

and by substituting H from Eq. (9), it becomes ready for the diagrammatical 
treatment [3]. After some manipulation [39] we get it in the form: 

<*0 U"~''lm*oU"~''> = <*g"~ IHI*P'~>S"'+ u + XI + )(11 + .gi l l  (25) 

where S cl) is the overlap of the first-order wave function: 

<~;UHF"IHI ~;UHF") -~- S(l) (26) 

The self-consistency effects may therefore be expressed from Eqs. (22), (25), and 
(26) as: 

<~gU"F"IHI~0U"F" > 
- <~o""Flnl~o""~> = ~ (U + XI + XII + XIII) (27) < ~;UHF" [ ~;UHF") 

Balkovh [29] extended our treatment for the second-order contributions by 
assuming: 

~;UHF'" = ~RHF -I- ao u~RHF + ao(U -- Ae)Oo U(~ RHF (28) 

Since 

Ae = <~o~.. I uI ~,o~"~> = o 

Eq. (28) becomes: 

~;UHF" = ~RHF _~ Q0 U4~o RHF + Qo UQo U ~  HF 

(29) 

(30) 
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X (2x) XIV XV XVI 

Fig. 9. Most  important  second-order "self-consistency" diagrams resulting from the perturbation 
expansion o f  the U H F  wave function (Eqs. (30) and (31)). Next 18 diagrams obtained [29] and not  
shown in this figure are assumed to give very small contributions. As in Fig. 7, diagram X must  be 
counted twice. The meaning of  vertices is the same as in Fig. 7 

By substituting for ~;UHF" in Eq. (22) she obtained: 
< ~ o U H F " I H [  ~ o U H F " >  

> 
1 

- S~2~ (H + X I  + XI I  + XIII  + X + X I V  

+ X V  + X V I  + 18 disregarded diagrams) (31) 

The disregarded diagrams are expected to give very small contributions. They 
contain five U vertices, four U vertices and one W vertex, or three U vertices and 
two W vertices and they would appear in the fourth order (together with 
diagrams XIV-XVI, see Fig. 9) and the fifth order of the RHF-MBPT theory 
presented in Sect. 3. The overlap integrals S (1) and S (2) in Eqs. (27) and (31) are 
given by [29, 42]: 

S °) = 1 + H* (32) 

S (2) = 1 + H*  + 2(XII*  + )(111") + X I V *  + X V *  + X V I *  (33) 

where the asterisks mean that the denominators of the diagrams II and XII-XVI 
in Figs. 6 and 8 are squared. 

Table 9. Simulation of  the U H F  energy by means  of  the perturbation expansion of the U H F  wave 
function. All entries are in a.u. and were obtained [29] with the 6-31G* basis set 

System E g  H F - -  E u  H F A S 2 
a 

self-consistency effect 

1. order 1. + 2. order perc. b 
Eq. (27) Eq. (31) 

CH 0.00355 0.006 - 0.00317 - 0.00329 92.6 
H2NO 0.00698 0.012 -0 .00593 -0 .00632  90.6 
CH 30  0.00435 0.008 - 0.00374 - 0.00390 89.6 
HCO 0.00433 0.015 - 0.00361 - 0.00382 88.4 
HO2 0.00545 0.013 - 0.00452 -- 0.00474 86.9 
CH3 0.00428 0.012 - 0.00339 -- 0.00356 83.3 
CN 0.01927 0.340 - 0.00399 - 0.00456 23.7 
02 0.01971 0.030 -0 .01683 -0 .01909  96.9 
CH2 0.00503 0.015 - 0.00387 - 0.00411 81.8 

a A S  2 is difference ( S  2) _ (Spure),2 by (Spure)2 we mean 0.75 for doubles, 2.0 for triplets 
b Absolute values and percentage with respect to the SCF result ERH F --EUH F 
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Some numer ica l  da t a  ob ta ined  [29] with Eqs. (27) and  (31) are summar ized  
in Table  9. W e  ordered  the systems t rea ted  accord ing  to  the decreas ing percent-  
age o f  the recovered energy difference ERH v -- EuHv. 

W i t h  the doub le t  states it is clearly seen in Table  9 tha t  if  the spin 
con t amina t i on  o f  higher  mul t ip le ts  is small  (S  2 is close to  0.75), Eq. (31) gives 
a b o u t  90% o f  the energy difference E R n F -  EUHF. As  the spin con t amina t i on  
becomes  larger,  the self-consistency effects are get t ing less and  less i m p o r t a n t  and  
in the ext reme case o f  the cyano  radical ,  Eq. (31) gives only  24% of  the 
ERnF --  EUHF difference. W i t h  the t r iplet  states (p resen ted  at  the b o t t o m  of  Table  
9) we do  no t  see such a c lear-cut  t rend  because  o f  a small  va r i a t ion  in S 2. 

E q u a t i o n  (31) also permi ts  us to make  a classif icat ion o f  d i ag rams  appear ing  
in the R H F - M B P T ( 3 )  theory.  The d i ag rams  II  and  V - X I I I  m a y  be called "sp in  
po la r i za t ion"  o r  "se l f -consis tency"  d i ag rams  and  the rest  o f  Fig.  7 m a y  be 
referred to as the "co r r e l a t i on"  d iagrams.  
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